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I. Introduction

We give a simple proof of the result in Pitt (1981) that positively

correlated normal random variables are associated: The proof is an adapta-

tion of the original proof of Slepian's inequality in Slepian (1962), and

extends to the case of elliptically contoured distributions.

II. Normal Random Vectors

Let X = (xl,..., xn) be a mean zero n-dimensional normal random vector

with nxn covariance matrix r (ai.). By a smooth function we will mean a

C2 function h(x) which together with its first and second order derivatives

satisfy a O(Ix N) growth condition at -, for some finite N.

We set

H(r) = Eh(X),

and we are interested in the manner that H(E) varies with E. Our main result

is

Proposition 1: Let r be another covariance matrix with Yii =Gi and

Yi <-lj for all i and J. If h is a smooth function on Rn and if

(1) ah(x) > 0 for all i and j with y
axiax i Ci
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2 I

Proof: By standard approximation arguments it suffices to show

> 0

whenever r is nonsingular and a2h/axiax > 0. Let *(x) =€(x) be the mean

zero normal density on Rn with covariance matrix Z. Then

(3) 2 x 2

Bii ax. 13 1i Bx~j

See e.g. Plackett (1954). Using (3) and our assumptions on h which justify

two integrations by parts we have

= h(x) 3F(x) dx
(4) Rn ij

a4 2Rij h(x) - (x) dx
In a2h ax

> O,

which completes the proof.

By varying h, r and E we obtain other results.

Corollary 1. Let h(xl, ... , xn) = f(xl,...xk)g(xk+l,...,x n) where f and g are

bounded measurable increasing functions. Suppose also that

Yii = lii for all i,

Y =ol if 1 <i, j < k or k < i, j < n,

Y ij if I < i <k< j <n.
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Then

H(r) < H(E).

In particular, if aij > 0 for 1 < i < k < j < n

Ef(X, "'"Xk)Eg (Xk+l""'Xn) < Ef(Xl,....'xk)g(Xk+l"'".Xn) d'

Proof: If f and g are smooth then h is smooth and

a h -af k-> 0 for < i < k < j< n.
axiax. ax. axj -

In this case the result follows from (2). The general case follows by approxi-

mations as in Pitt (1981).

To state Slepian's inequality, we write P (A) for the probability of the

event that X e A c- Rn.

Corollary 2. (Slepian) If yii =ii and Yij <ij for all i and j then for*

each A

Pr(max X. < Al < P rmax X, < A).

Proof: Again by standard arguments it suffices to show that H(r) < H(E) for
n

each product h(x) = 11 fi(xi) of bounded non-negative smooth decreasing function
1

fi(xi). For i # j, each such product satisfies a2h/ax ax. > 0, and the result

follows from Proposition 1.
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Remark: Several variants are possible. In particular, changing the sign of

xI ... ,Xk in Corollary 1 gives the result of Jogdeo and Proschan (1981):
k&

If aij <0 for 1 < i < k < j < n, and if f and g ore increasing then

Ef(x l,,. .. ,$xk )g (x k+ 1 ... xn ) < Ef(xI , .... Xk)Eg (Xk+l , .. ..,xn ) .

I1. Elliptically Contoured Distributions

The previous results extend to elliptically contoured distributions. The

extension of Slepian's inequality to this case was given in Das Gupta, Eaton,

Olkin, Perlman, Savage and Sobel (1972).

Let <x,y- denote the Euclidean inner product on Rn and let E be a non-

singular positive definite matrix. A probability density on Rn of the form

PE (x) = iEi- p(<XE 1 x>)

is called elliptically contoured. Here p(X) > 0 is defined on [0,-) and is

assumed to satisfy To Xn-lp(.N)d < .

We write

H(E) = IRn h(x)p E(x) dx,

and with this notation we will show that Proposition I remains valid.

It will suffice to establish (2) under the technical condition that p(N)

is a C2 function with compact support, and under this hypothesis we will show

that: '

(5) If a2h/axaxj > 0, then a H(E) > 0.
,oij -
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The proof is similar to the earlier one, but requires a substitute for

the equations (3). This is supplied by Proposition 2.

For X > 0 we set

F(X) = p() dt

Let

=F p(E) dC,

and

%(x) =2) {F F(<x,-

Proposition 2. If h(x) is smooth and p(x) is C2 with compact support, then

ah ( xi (Rn  @2h(x) G (x) dx.~..~flh(x)p (x) dx =  Rn Bxixx

a13 J JR n ax a

Remarks: Since G > 0 this proves (5). Also, in the case that p. = I
is a normal density one easily checks that G= *' so (6) is a generalizatidn

of (3).

Proof: Let Z-1 = (ij). We will use the matrix identities

( ii(7) ::Ki--V = " 0 ThI $,

aoij

-(iik2=lo xk),

-a nxP x> a -( n II n It II t II
kCl
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without further comment.

Calculating, we now have

apn n
a p -21 zl -  p'(<x,-r-x>)( I k axk)( I J ax)

k=l W~
-ain ik ,aP

, I ( a ~x ) I
Sk=l l X

Our assumptions on p justify integration by parts and we have

f 1  h(x)p.(x)dx =-a f h(x)p (x)dx + I "k-(-
oij Rn  fRn En ax k=l Rn (k l kxk)h(x)]Pix r xdx

n ik ahhx)

fRn ( k 1 ikx k) ahx) p,(x)dx

1 ai n  x x-' F(<x'r-lx>)dx

R 2h(x) Gx)dx.

R n axiax

The above calculations allow one extension which is perhaps worthwhile

making. Using (7) we can easily verify that

(8) ai fRn h(x)p (x)dx xl! Gz(x)dx.
30iifR n E 2 R nax.*

Combining (6) and (8) it is elementary to prove

- - -- --- --a- -------. -- ,---
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Proposition 3. Let r and E be positive definite matrices and set

A = -r (a ij). Let Et r + tA and let h(x) be a smooth function satisfying

n >2
(9) Ah(x) a i ai xiax 0

Then

Rn h(x)p (x)dx

is an increasing function of t, 0 < t < 1.

Proof: Assuming, as before, that p(X) is a C2 function with compact support,

then (6) and (8) give

t Rn h(x)pEt(x)dx fI n Ah(x)G E (x)dx.

By (9) this is non-negative.
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